

Big Rock Creek Groundwater Recharge Feasibility Study

Alternatives Analysis – Preliminary Findings Update

12 August 2021

Agenda

- Recharge Alternatives Overview
 - Locations
 - Recharge Capacity
 - Capital/O&M Costs
 - Permitting Considerations
- Preliminary Alternative Rankings
- Next Steps
- Open Discussion

Recharge Alternatives Overview

- Alternative 1: In-Stream Pushup Berms
- Alternative 2: East Avenue T and East Avenue S Culverts
- Alternative 3: Offsite Recharge Basins and Pipeline
- Alternative 4: Water Booster Station and Pipeline from Carl B. Hunter WTP

Alternative 1: In-Stream Pushup Berms

- Recharge Capacity: 20,000 AFY
- Capital Cost: \$0.52 M (\$1/AF)
- 20-Year O&M Cost: **\$1.65 M**
- Very Intensive Environmental and Permitting Requirements
 - Up to 2 years to complete permitting
 - Continuous environmental surveying required due to berm reconstruction
- Share Creek with Mother Nature

Alternative 2: East Avenue T and East Avenue S Culverts

- Recharge Capacity: 2,200 AFY
- Capital Cost: \$0.51 M (\$12/AF)
- 20-Year O&M Cost: **\$0.04 M**
- Limited Capacity
- Moderate Permitting Requirements
- Small Footprint
- Provides some flood control across East Ave T

Alternative 3: Offsite Recharge Basins and Pipeline

- Recharge Capacity: 20,000 AFY
- Capital Cost: \$9.7 M (\$24/AF)
- 20-Year O&M Cost: **\$1.01 M**
- High Yield, High Cost
- Limited Permitting Requirements
 - Contained footprint
 - Pipeline stays within right-of-way
- Standard pipeline and berm construction

Alternative 3: Offsite Recharge Basins and Pipeline

7

Alternative 4: Water Booster Station and Pipeline from Carl B. Hunter WTP

8

- Recharge Capacity: 2,200 AFY
- Capital Cost: \$10.1 M (\$192/AF)
- 20-Year O&M Cost: **\$1.38 M**
- Low Yield, High Costs Moderate permitting requirements
- Large project footprint/ required easement acquisition
- \$88,000/yr savings by avoiding Pearblossom PS Lift, compared
 toother alternatives

Preliminary Alternative Rankings

Evaluation Criteria Definition							
Evaluation Criteria	Definition	Weighting Factor					
Recharge Capacity	Total annual recharge volume (AFY) anticipated for the alternative	0 (Worst) - 5 (Best)	30%				
Capital Cost	The capital cost required to construct the alternative	0 (Worst) - 5 (Best)	15%				
20-Year O&M Cost	The 20-year lifespan O&M cost required to operate and maintain the alternative	0 (Worst) - 5 (Best)	10%				
Regulatory and Permitting Requirements	Regulatory and permitting requirements and associated costs needed to construct and operate the alternative	0 (Worst) - 5 (Best)	25%				
Ease of Construction	Accounts for complexity of construction and the project footprint	0 (Worst) - 5 (Best)	10%				
Community Impacts	Potential positive and/or negative impacts to the surrounding community during and after construction of the alternative	0 (Worst) - 5 (Best)	10%				

- Alternatives scored on a relative scale from 0 (worst) to 5 (best)
- Weighting factors applied to each score based on the relative importance of each criteria

Preliminary Alternative Rankings

1			Alternative 1 Al		ternative 2		Alternative 3		Alternative 4	
			In-Channel Berms		East Avenue T/S Culverts		Offsite Recharge Basins		Water Booster Station/Pipeline	
		\$/AF	\$1		\$12		\$24		\$192	
Criteria	Weight	Range	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score
Recharge Capacity	30%	0 - 5	5.0	1.50	0.54	0.16	5.0	1.50	0.54	0.16
Capital Cost	15%	0 - 5	5.0	0.75	4.90	0.74	0.3	0.04	0.25	0.04
20-Year O&M Cost	10%	0 - 5	0.1	0.01	5.00	0.50	0.2	0.02	5.00	0.50
Regulatory and Permitting Requirements	25%	0 - 5	0.5	0.13	4.00	1.00	5.0	1.25	3.00	0.75
Ease of Construction	10%	0 - 5	5.0	0.50	4.00	0.40	3.0	0.30	2.00	0.20
Community Impacts	10%	0 - 5	3.0	0.30	5.00	0.50	3.0	0.30	3.00	0.30
Total	100%			3.19		3.30		3.41		1.95

Preliminary Alternative Rankings

Alternative	Score	Rank
1 - In-Channel Berms	3.19	3
2 - East Avenue T and S Culverts	3.30	2
3 - Offsite Recharge Basins	3.41	1
4 - Water Booster Station/ Pipeline	1.95	4

- Alternative 3 Offsite Recharge Basins is the preferred alternative
 - Largest recharge capacity (tied with Alternative 1)
 - Recharge capacity flexibility
 - Stay out of the creek
 - Simplest permitting/ regulatory requirements

Next Steps

- Identify specific parcels and optimize design for recharge basins & pipeline
- Preliminary design for recharge facilities
- CEQA documentation

OPEN DISCUSSION / QUESTIONS